

計測技術における アナログとデジタルの攻防

有限会社 田澤R&D技術士事務所 田澤勇夫

目 次

1. 湿度計のオール・デジタル化 デジタル技術の台頭

- 2. 性能の根本を決めるデジタル回路におけるアナログ特性 アナログ技術の残影
- 3. 高精度化のための計測理論のアルゴリズム化 インテリジェント・センシング技術の台頭
- 4. 超高精度化のための計測原理とアナログ技術の融合 アナログ技術の復興
- 5.総論 アナログ技術の基礎論に向けて

デジタルとアナログの攻防とは私の技術経歴そのもの

1-1 湿度センサ・湿度計の概要

- 1-1-1 湿度センサ・湿度計の分類
- 1-1-2 化学湿度センサの基本構造・特性
- 1-1-3 露点計

1-2 湿度計のオール・デジタル化

1-1 湿度センサ・湿度計の概要

1-1-2 化学湿度センサの基本構造・特性(A)

• 高分子系湿度センサ

TZWRD -

1-1-2 化学湿度センサの基本構造・特性(B)

セラミック系湿度センサ

外観例 表面構造例

電気抵抗変化型 静電容量変化型 セラミックス系湿度センサの特性例

化学湿度センサの特徴

1-1-3 露点計

鏡面冷却式露点計の原理図

湿度計のアナログ回路

基本構成図

1-2 湿度計のオール・デジタル化

TTUSES SAMMORE BENESSE

基板

外観

オールデジタル化の結果

Sec. 3

湿度計用LSI (Chip on Board)

B 64		17-1		
1				
			axei -	
7		日本		

オール・デジタル回路型

アナログ回路型とオール・デジタル回路型温、湿度計の大きさ比較

オール・デジタル湿度計によって向上した性能				
項目	アナロク方式に対する改善			
低価格化	1/5~1/10			
超小型化	1/5~1/10			
超消費電力化	1/1000			
対環境安定性の向上	ある程度向上			

オール・デジタル湿度計 主要部品の原価表

4 bits Microcomputer	400	
Humidity Sensor	300	
Thermistor	30	
74HC14	50	
74HC126	50	
Ceramic Capacitor	1	
Metal Film Resistor	10	<u>1</u>
Electronic Board	150	牛
Total	991	Ē

2.性能の根本を決めるデジタル回路におけるアナログ特性 アナログ技術の残影

- 2-1 シュミット・インパータ型*CR*発振回路の動作原理
- 2-2 CR発振回路に湿度センサ挿入
- 2-3 湿度センサの劣化、経年変化の問題
- 2-4 見かけ上の*ON*抵抗の存在
- 2-5 標準抵抗による周波数比較方式

2-1 シュミット・インバータ型CR発振回路 の動作原理

シュミット・インパータCR発振回路の基本形

図 26 充·放電電荷 Qc, Qd

2-2 CR発振回路に湿度センサ挿入

2-3 湿度センサの劣化、経年変化の問題

化学湿度センサは印加電圧にシビア な制限がある

- ・直流成分印加の禁止
- ・電圧の大きさの制限

化学湿度センサの構造は複雑であり、 単なる電気抵抗ではない

湿度センサの経時変化特性の評価

湿度センサの通電放置試験データ

TZWRD

2-4 見かけ上のON抵抗の存在

予想以上のON抵抗値の存在

2-5 標準抵抗による周波数比較方式

周波数fhより直接、Rhを求める

 $f_h = \frac{\kappa}{C_1 R_h} \Longrightarrow R_h = \frac{\kappa}{C_1} \left(\frac{1}{f_h} \right)$

周波数比より直接、Rhを求める $f_{h} = \frac{1}{C_{1}R_{h}}$ $f_{1} = \frac{\kappa}{C_{1}R_{1}} \implies R_{h} = R_{1} \begin{pmatrix} f_{1} \\ f_{h} \end{pmatrix}$

コンデンサ容量の経時変化、ばらつき 温度係数による誤差

2章(アナログ技術の残影)のまとめ

オール・デジタル湿度計の性能を決める要因 湿度センサ、標準抵抗のアナログ特性 デジタル検出回路アナログ特性

3.高精度化のための計測理論の アルゴリズム化 インテリジェント・センシング技術の台頭

- 3-1 計測理論のアルゴリズム化
- 3-2 電気抵抗変化型湿度センサを用いた湿度計の アルゴリズム設計
- 3-3 静電容量変化型湿度センサを用いた露点計に おけるアルゴリズム設計

3-4 高精度温度計測におけるアルゴリズム設計 3-5 第3章のまとめ

3-1 計測理論のアルゴリズム化

計測における逆関数

3-2 電気抵抗変化型湿度センサを用いた 湿度計のアルゴリズム設計

湿度計の要求精度を5%RH程度であれば、
 演算精度が2%RHでも許容できるが、
 湿度計の要求精度を2~3%RHであると、
 演算精度は<1%RHが望まれる

実際は、抵抗補間と折れ線近似による リニアライズが行われている

3-3 静電容量変化型湿度センサを用いた 露点計におけるアルゴリズム設計

露点センサ特性の理論展開

センサ特性の非線形性が強い

所要の精度で逆関数を求めるには高度な演算処理能力が要求 され、また高度な演算処理を行っても十分な精度が得られない

実際の露点計製造の現場において は理論展開に基づいた演算処理を 行うのではな〈、露点とセンサ容量 の関係を直接、実測により求め、そ の関係をROMに入れるようなテク ニック的方法を用いている。

計測原理に基づいて センサ特性を解析することの必要性

3-4 高精度温度計測におけるアルゴリズム設計

主な温度センサ、温度計

物性理論と演算精度の関係 Step 1

各金属には固有の抵抗、その温度係数を持ち、基本的 には物性論(固体電子論)により説明できる

オームの法則により金属の抵抗率は $\rho = \frac{m}{ne^2} \frac{1}{\tau}$ *m*:電子質量、*n*:自由電子数 *e*:電子の電荷値、:平均自由時間 金属中の格子は熱振動しており、調和振動で あるとすると、その変位パの平均の2乗は $\overline{x}^2 \propto kT$ $\frac{1}{-}$ x であるので $\rho \propto T$ また、 よって、 $R = R_0 + \alpha \cdot t$

R₀: 0 における抵抗値、 :温度係数 *t =T-273.15*:ケルビン温度

理論1次式 $R = R_0 + \alpha \cdot t$ の誤差

TZWRD

金属中の格子振動を調和振動(線形)と仮定(近似)するのではなく、非調和振動(非線形)として理論を展開する。

THE TUSES SAMERINE MARKETS A

理論2次式 $R=R_0+A\cdot t+B\cdot t^2$ の誤差

理論2次式においても最大0.016 (温度換算0.04)の誤差がある

2次をこえる高次項を省略したこともあるが、これ以上の温度 の精度を論じるには温度目盛の概念を取入れる必要がある

国際実用温度目盛	定義定点			
	定義 定点 与えられた値 不確かさの推定値			
幾つかの再現可能な物質	平衡水素の三重点 13.81 K 0.01 K			
の平衡状態(定義定点)に	平衡水葉の17.042 K点 17.042 K 0.01 K 平衡水素の沸点 20.28 K 0.01 K			
与えられる温度値に基づ	* オンの汚点 27.102 K 0.01 K			
いて日成られる白全測温	散業の連点 90.188 K 0.01 K			
	木 の 三 重 点 273.16 K 定義として正確に 本 の 凍 点 100 °C 0.005K			
加加冲に至している	すずの機固点 231,9681°C 0,015K			
	重 鉛 の 綱 固 点 419.58 °C 0.03 K 銀 の 綱 固 点 961.93 °C 0.2 K			
	金 の 課 国 点 1064.43 ℃ 0.2 K			

国際温度目盛IPTS-68 t₆₈

国際温度目盛ITS-90

1990年国際温度目盛として、
純白金ではなく極微量の異種金属 (Au等) 希薄合金を採用

$$R = R_{0.01} \left(W_r(T_{90}) + a(W_r(T_{90}) - 1) + b(W_r(T_{90}) - 1)^2 + e(W_r(T_{90}) - 1)^3 + f\left(W_r(T_{90}) - \frac{R_{660.323}}{R_{0.01}} \right)^2 \right)$$

 $W_r(T_{90}) = D_0 + \sum_{i=1}^9 D_i \left(\frac{T_{90}/K - 754.15}{481} \right)^i$
逆関数は
 $T_{90}/K - 273.15 = F_0 + \sum_{i=1}^9 F_i \left(\frac{W_r(T_{90}) - 2.64}{1.64} \right)^i$

$$\Gamma_0 + \sum_{i=1} \Gamma_i \left(1.64 \right)$$

TZWRD

第3章(インテリジェントセンシングの台頭)のまとめ

理論構築のためにはモデル化が必要で、現実とモデルの 間のギャップが高精度計測に誤差として影響を与える 計測精度を上げれば上げるほどセンサ特性の非線形性 が強くなる

非線形性が強くなると数学による近似解の誤差が精度上 問題となる

人間の持つテクニック的手法により逆関数を求めることが

人間の持つアナログ的思考の重要性

高度なアルゴリズムの設計には

論理的思考だけでは限界があり、

人間の持つアナログ的思考の助けが必要

数理物理学の大胆な記号で表現された体系の究極の基盤は、知恵と曖昧な類推 や直感とを特徴とする、もっとも深いところにある思考に永遠に拘束される ジョン・D・バウロ

ある論理体系が完全だとしても、そこには必ず証明できない真理がある

ヘーゲル不完全性定理

4. 超高精度化のための計測原理とアナログ技術の融合 アナログ技術の復興

計測原理とアナログ技術は 相互補完の関係

電位差計法における<u>高精度計測</u>のための課題

TZWRD -

熱起電力による誤差

定電流の不安定性による誤差

A/D Converterの非直線性による誤差

標準抵抗の温度依存性、経時変化による誤差

計測原理とアナログ技術のスパイラル により高精度化へ

5. 総論 - アナログ技術の基礎論に向けて

- (1) オール・デジタル回路でさえ、根本性能を決めるのは回路の持つ アナログ特性である
- (2) 物理化学的手法による計測原理に基づく計測アルゴリズムの構築 は重要であるが、現実の対象は非線形であり、高精度化のために は人間の持つアナログ的行為が重要となる
- 計測原理とアナログ技術は相互補完の関係にあると言える。それ (3) らの相互作用を通じて、高精度化への道が向上する

アナログ技術とは非線形問題ではなかろうか? ・原因と結果の因果関係が不明確 ・複数の解が存在する ・アナログ技術では試行錯誤の結果、明確な理由が判明しないが良い結 果が得られたり、同じ結果を得るために異なる複数の方法が存在

デジタルとアナログの関係のアナロジー

